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ABSTRACT: An ultralow thermal conductivity showing a
minimum of the order of 0.01 W/(m K) is predicted at T =
300 K in a Si/Ge quantum dot crystal with a Ge nanodot
spacing d = ±30 nm. This theoretical result is obtained when
all Ge nanodot interfaces are assumed to be weakly bonded
with respect to the Si matrix. The thermal conductivity is a
decreasing functional of the weakly bonded nanodot density q,
defined as the number of weakly bonded dots divided by the
total number of dots in the Si/Ge supercrystal. The thermal
conductivity minimum for a given q is reached when d is increased to the optimal period d*. When only one nanodot out of six is
weakly bonded (case of q = 1/6), the thermal conductivity of air (±0.025 W/(m K)) is already reached. A high thermoelectric
figure of merit ZT is envisioned. Indeed, ZT depends on the inverse of the thermal conductivity, which may present ±15 000-fold
reduction compared with that of bulk Si (case of q = 1). The ±1 W/(m K) mark could not be significantly beaten using
nanomaterials with phonon blocking properties presenting a lower dimensionality than 3, in contrast to the supercrystal with
weak bonds.
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■ INTRODUCTION

If S, σ, and T respectively denote the Seebeck coefficient,
electrical conductivity, and temperature, the thermoelectric
figure of merit ZT = S2σT/λ is proportional to the power factor
S2σ but depends on the inverse of the thermal conductivity λ.
Significant renewable energy progresses would be obtained if a
high ZT > 2 or 3 could be reached. If the thermal contact
resistances could be avoided, ZT ≥ 3 would produce a
thermoelectric yield higher than 42% of the Carnot efficiency
(for hot and cold junctions at 800 and 300 K, respectively).
Such efficiency is competitive with the yields of conventional
thermal engines. Therefore, the design of semiconducting
nanomaterials showing an ultralow lattice thermal conductivity
is an active research area of alternative energy science and
engineering.1−12 Semiconductors with an indirect electronic
band gap are also preferred to avoid the electronic part λe of the
thermal conductivity.
Superlattices were first studied to achieve ZT > 1 owing to λ

reduction between their thin periodic layers. However, their
synthesis with ZT > 1 is usually not possible due to lattice
mismatches forming dislocations and cracks. Nanowires were as
well proposed for one-dimensional (1D) phonon confinement
owing to the quasi 0 dimensionality of the directions
orthogonal to the longitudinal axis.8,9 In experiments, these
1D insulating nanomaterials usually fail to beat the lowest
thermal-conductivity limit Λmin ≈ 1 W/(m K) of bulk

amorphous Si.9−12 Three-dimensional (3D) nanostructured
materials are potentially better to reduce λ due to enhanced
confinement of the phonons inside a 3D-type barrier.1,13,14

Novel epitaxial and self-assembly technologies (as nanoscale
molecular beam epitaxy) have been used for bottom-up
synthesis of many types of nanomaterials.1,13,15 For instance,
3D Ge quantum dot arrays in a Si matrix were synthesized for
quantum-device and solar-energy applications.16,17 As illus-
trated in Figure 1, a Si/Ge supercrystal molecular structure is
proposed by supercell repetition. From this theoretical model,
we show that 3D high-density Ge quantum dot arrays in Si
could also present an ultralow thermal conductivity, possibly
leading to high ZT. The calculated extreme λ reduction is due
to two distinct phenomena: The first decrease factor is
“coherent” and comes from the low phonon group velocities
derived from the folded dispersion diagram computed by lattice
dynamics.1,4 On the other hand, λ ∼ 0.05 W/(m K) was
experimentally measured in two-dimensional (2D) layered
WSe2 crystals presenting weak covalent bonding at their layer
interfaces.11 By analogy with these experiments and others,12

weak covalent bonding of the Ge nanodots−Si matrix interfaces
is introduced in the Si/Ge supercrystal, resulting in an
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additional λ decrease effect. Indeed, phonon scattering is not
coherent, at the misbonded interfaces, with the utilized
Stillinger−Weber potential in conjunction with the Umklapp
scattering process (U process), at the infinite supercrystal scale.
Hence, an additional scattering relaxation time is computed
using an incoherent model of phonon near-field scattering by
the weakly bonded Ge nanodots and has to be added to the
usual U process probability in agreement with the Boltzmann
transport equation (see the Supporting Information). In the
incoherent model, the scattering cross section is set to the
geometrical limit of the misbonded scatterer according to
scattering in near-geometrical optics (as explained in the next
sections). The terminology incoherent is preferred because we
believe that the 3D misbonded barriers could generate
significant nonfocusing of the phonons, if they could be
experimentally observed as the photons in optics.
In this report, we especially focus on the λ dependence vs the

number of weakly bonded nanodots in the Si/Ge supercrystal.
An important parameter to be considered in this analysis is the
density q of weakly bonded Ge nanodots, defined as the
number of weakly bonded nanodots divided by the total
number of nanodots in the overall supercrystal, designed with
both weakly and perfectly bonded dots. In an epitaxial process,
we could consider c as the primitive vector along the growth
axis of a Ge nanodot, which is orthogonal to an Si epitaxial layer
with the in-plane crystallographic axes related to the primitive
vectors a and b, defined at a reference lattice site O. Inside a
space that can be as small as one monolayer, weak covalent
bonding of a Ge nanoparticle with the local symmetry axes a′,
b′, and c′ can be induced by translation of the lattice sites of the
nanodot, in the directions a and b, with respect to those of the
Si matrix. After translation, the reference lattice site O′ of the
nanodot local axes is shifted by f1a and f 2b compare to O, in the
directions of the vectors a = a1a and b = b1b, respectively,
where f1 and f 2 are fractional numbers lower than 1. As shown
in two dimensions in Figure 2, the largest translation is
obtained for f1 = f 2 = 1/2 in the diamond-cubic (dc) symmetry.
This transformation leads to failure of the tetrahedral sp3

covalent bonding structure at the Ge nanodot−Si matrix
interfaces of the Si/Ge supercrystal. For one interface, the
tetrahedrons are represented by equilateral triangles in the 2D

simplified projection in Figure 2. These Si/Ge interfaces
become weakly bonded due to both incorrect and missing Ge−
Si covalent bonds that occur at their separations thereof.
Phonon incoherent scattering by the misbonded interfaces
could be significant because the interfacial lack of proper
covalent bonds creates 3D vibration-mode transport barriers
and they cannot propagate in the quantum dots.
From the precedent, phonon scattering in the Si/Ge

supercrystal is of two types: (i) coherent due to the low
group velocities leading to localization and (ii) incoherent due
to the misbonded interfaces resulting in nonfocusing. The
incoherent effect therefore is a second factor on the huge λ
decrease (additional to the low-group-velocity effect). When all
Ge nanodots are weakly bonded (q = 1), a fast λ diminution is
first observed when the nanodot spacing d [Figure 1] is
augmented in the supercrystal. A global minimum λ* = 0.009
W/(m K) of the supercrystal thermal conductivity, correspond-
ing to a 17 000-fold decrease with respect to bulk Si (∼150 W/
(m K)), is computed at T = 300 K when d reaches the optimal
value d* ≈ 30 nm (according to the proposed model). A high
ZT > 1 is envisioned from this result. After the minimum is
obtained, the λ curve increases above Λmin for d larger than
∼500 nm in Si/Ge supercrystals with a ∼ 12.5 Ge at % filling
ratio in the Si matrix.

■ THEORETICAL METHOD
Supercrystal Structure. The ultralow λ in the Si/Ge

supercrystal is investigated from a 3D supercell model. A
nanostructures looking like a 3D phononic crystal, if the
medium were continuous, is obtained. The supercrystal lattice

Figure 1. Si/Ge supercrystal with N = 14 and M = 6. The parameters
of the Ge nanodots located at the supercell centers are the following:
spacing d = 14a = 7.6034 nm and width w = 6a = 3.2586 nm. 2198 Ge
atoms and 19 754 Si atoms are respectively denoted by black and
brown balls and sticks to form a supercell. (left inset) Continuous
supercrystal view at a larger scale forming a “phononic crystal” motif.

Figure 2. Simplified 2D projection: Si/Ge interface with misbonded
atoms at the separation between the two materials. A tetrahedron, with
one atom at its center of mass that is covalently bonded to four other
atoms located at its corners, is typical of the dc group. In this 2D
figure, c is the primitive vector that is supposed to be orthogonal to the
bottom Si epitaxial layer (with the lattice sites depicted as dark brown
dots). We also project a sp3 tetrahedron to form an equilateral triangle
with three atoms at its corner. In addition, we assume that the Ge
nanocrystal lattice sites (denoted as black dots) are shifted by f1a (with
f1 = 1/2) in the direction of the primitive vector a compared with the
Si matrix, so that the origin O′ of the local symmetry axes a′ and c′ of
the Ge nanodot is translated by the distance a/2 in the same direction.
The Si/Ge separation is highlighted using a thin transparent rectangle
of pink color (in the middle). We observe that the light brown
triangles of the Si matrix, in the layer just below the separation, are not
connected at their corners to the gray triangles of the Ge nanocrystal,
in the layer just above. The Ge nanodot is therefore weakly bonded to
the Si matrix due to the absence of correct covalent bonds between the
two materials at their interface. Nonexistence of covalent bonds can as
well occur between the Ge and Si atoms at the separation.
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parameter d = Na is given in the ⟨100⟩ directions by an integer
number of interatomic distances denoted by a, as shown in
Figure 1. A cubic supercell is composed of N × N × N = N3 dc
cells with eight atoms per primitive cell and is repeated to
obtain a simple-cubic (sc) supercrystal at the “phononic crystal”
scale [inset of Figure 1]. If N = 14, a supercell contains N3 =
2774 dc cells and 8N3 = 21 952 atoms. In each supercell, the Si
atoms in a central subset of M × M × M = M3 dc cells are
substituted by Ge atoms to form a nanodot with the edge
length w = Ma in ⟨100⟩. If N = 14, N − 1 = 13 cubic-nanodot
configurations are accepted (by definition) because the
nanodot basis in number of a interatomic distances can vary
fromM = 1 toM = N − 1 = 13. The N − 1 = 13 possible Si/Ge
supercrystal types with N = 14 present the same nonrelaxed
nanodot spacing d = Na = 14a = 7.6034 nm. However, M = 6
corresponds to the nanodot basis w = Ma = 6a = 3.2586 nm
(possible if N ≥ 7). When M = 3, 6, or 9, each nanodot
respectively contains nGe = 344, 2198, or 6860 Ge atoms and is
surrounded by nSi = 21 608, 19 754, or 15 092 Si atoms in a
supercell with N = 14. In Figure 1, the Ge and Si atoms are
respectively depicted by black and brown sticks and balls (N =
14), according to the sp3 covalent structure. The supercrystal
with N = 14 and M = 6 has a chemical composition GexSi1−x
given by the Ge nanodot filling ratios x = 2198/19 754 ≈ 11.1
Ge at %. Here, x is set to the mean value of ∼1/8 = 12.5 Ge at
%.
Thermal Conductivity. Due to the low dimensions of the

nanoscale embedded scatterers (see Supporting Information),
the lattice thermal conductivity of the supercrystal can be
computed by integration over the only radial wavenumber k = |
k| as

∫∑λ τ ω κ= ℏ
∂
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In eq 1, ℏ is the reduced Planck constant. The index m = 1 to
Nm designates one branch of the Nm dispersion curves ωm(k)
obtained by lattice dynamics with the Stillinger−Weber force
field.18 The phonon group velocities νm(k) = dωm(k)/dk are
computed by derivation of the dispersion curves with respect to
k. The number of eigenmodes is given by Nm = 3 × 8N3 = 24N3

= 65 856 for the N − 1 = 13 possible supercrystals with N = 14
[Figure 1]. In eq 1, the phonon scattering relaxation times
τm(k) and Bose−Einstein distributions nm(0)(k) for a temperature
T are all functional of k. The kernel κ(k) is adjusted to obtain
the same thermal conductivity than that of bulk Si when the Si
matrix does not contain any nanodot (M = 0), as explained in
the Supporting Information. The 1/3 multiplying factor is the
result of this adjustment and in agreement with the kinetic
theory for the thermal conductivity. The integral in eq 1 is
calculated over the finite interval [0, kmax], where the maximum
k value, kmax, is located at the right border of the first Brillouin
zone (BZ1). For a bulk dc material with 3 × 2 = 6 dispersion
curves, this boundary is located at kmax = 2π/a with a = 0.5431
nm for bulk dc Si. In contrast, in a Si/Ge supercrystal with the
nanodot spacing d = Na, kmax = π/d is used in eq 1 due to the sc
crystallinity at the “phononic crystal” scale. When N = 14, BZ1
is divided by 2N = 28 folds with respect to that of bulk dc Si
because (2π/a)/(π/d) = 2d/a = 2N.
Umklapp and Near-Field Scattering. For a perfect

supercrystal (with a perfect bonding structure, i.e. q = 0),
only the U process relaxation time τm

(u)(k) of the modes (m, k)

is considered to compute λ with τm(k) = τm
(u)(k) in eq 1. An

analytical expression was used by a number of authors to
calculate τm

(u)(k) vs T.4,19−21 To model the second factor on the
extreme λ reduction in the Si/Ge supercrystal, weak bonding at
the interfaces between a number of Ge nanodots (with the
density q) and the Si matrix is introduced by the incoherent or
near-field scattering relaxation time τm

(q)(k). Here, λ is computed
in supercrystals containing both weakly and perfectly bonded
nanodots. λ is analyzed vs the density q between 0 and 1. The
total relaxation time τm(k) is obtained by addition of two time-
scattering probabilities as

τ τ τ= +− − −k k k[ ( )] [ ( )] [ ( )]m m
u

m
q1 ( ) 1 ( ) 1

(2)

Scattering independence22 is considered between the scatterers
corresponding to the weakly bonded nanodots with a density q
in the supercrystal. A priori, multiple scattering and defects
would lead to an even lower λ than that computed in this study
[by addition of other time probability terms in eq 2]. However,
if the density of defects would become too high, the thermal
conductivity could be higher and increase above Λmin because
the nanomaterial would not behave anymore as a weakly
bonded supercrystal with 3D barriers but as an amorphous bulk
material.11 For q ≠ 0 and q ≠ 1, disorder effects are already
included in the term 1/τm

(q)(k) in eq 2. Indeed, the weakly
bonded nanodots can be chosen randomly in the total crystal
with a density q that is not related to their individual positions.
On the basis of classical near-geometrical scattering theory in

optics,23−25 the incoherent probability 1/τm
(q)(k) is proportional

to the average near-field scattering cross section σ̅q over the
weakly bonded nanodots as

τ σ σ= ̅ ̅ =k v k V Gq1/ ( ) ( )/ with 2m
q

q m q
( )

(3)

In eq 3, V = d3 is the supercell volume.22 Equation 3, for the
near-field scattering cross section σ̅q, holds for several reasons:
First, coherent diffraction, as known in optics,26−28 is
impossible because the average mean free path (MFP) lSi ∼
100 nm of the phonons in bulk dc Si remains quite large in
comparison with the scatterer separation d, leading to many
random collisions and much smaller MFP in the nanostructure.
Second, Rayleigh or far-field scattering (in k4 or ω4) is
negligible for the THz scale folded modes in the Si/Ge
nanostructure, even for a small d.4,23 Indeed, at the local scale of
a weakly bonded interface and after unfolding of the dispersion
diagram (global scale), most of the “optical” modes have
unfolded scattered wavelengths smaller than the system
characteristic size (∼d), leading to near-field scattering. Note
that the wavelength at the BZ1 boundary is calculated as 2π/
kmax = 2d. In addition, the three “acoustical” modes (starting
from the 0 frequency) represent less than 3/(24N3) = 0.005%
of the folded BZ1 occupancy when N ≥ 14. However, it was
shown in refs 4 and 23 that the phonon scattering cross section
quickly grows to the geometrical limit (2G) within BZ1 and
thereafter shows damped oscillations around this limit in the
higher order Brillouin zones for the unfolded wavenumbers k >
kmax (see, for example, Figure 4 in ref 4), in agreement with
scattering in optics.24,25 From the precedent, the cross section
σ̅q is assigned to its geometrical limit 2G for one misbonded
nanodot, which seems to be a reasonable approximation.
When all nanodots in the supercrystal are weakly bonded, the

effective cross section is given by σ̅q = 2G because q = 1 in eq 3.
G = πR2 in eq 3 is the geometrical projection of one of the
weakly bonded nanodots with the average equivalent radius R.
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This surface has to be multiplied by 2 (extinction paradox) to
obtain σ̅q for q = 1 in eq 3.24,25 However, when q < 1, the final
expression [eq 3] for the effective cross section is σ̅q = 2Gq by
averaging over the only misbonded dots (since we consider
scattering independence between the scatterers). The proba-
bility 1/τm

(q)(k) is maximal when q = 1 in eq 3, and the lowest λ
vs q is obtained for this q value [eqs 1 and 2]. In contrast, the
number of weakly bonded nanodots is 0 for a perfect crystal
resulting in 1/τm

(q)(k) = 0 because q = 0 in eq 3. In this case,
only Umklapp scattering is taken into account because τm(k) =
τm
(u)(k) from eq 2. The largest λ vs q is therefore obtained when
q = 0 [eqs 1 and 2]. Density values within the interval 0 < q < 1
are intermediate cases with a partial number of weakly bonded
nanodots. λ significantly decreases when q is increased from 0
to 1. Note that τm

(u)(k) is computed from a traditional analytical
expression.20 This model holds in the nanostructure since the
average MFP due to Umklapp scattering lu remains of the order
of that of bulk Si, lSi ≈ 100 nm.4 However, the average MFP lq
from the weakly bonded nanodot interfaces, due to τm

(q)(k), is of
the order of 10 nm or less.14 Consequently, lq is predominant
over lu and the total average MFP l is closed to lq. The term lu
has to be seen as a reference value to compute the only
coherent effect of the low phonon group velocities when all
nanodot interfaces are correctly bonded with the Si matrix
(case of the perfect crystal with q = 0).

■ RESULTS AND DISCUSSION
Dispersion Curves. Figure 3a presents a number of the

24N3 = 65 856 dispersion curves of the Si/Ge supercrystal with
N = 14 and M = 6 [Figure 1]. The 30 first dispersion curves
related to the phonon eigenmodes from m = 1 to 30 in a
frequency range of 1.08 THz, from f1(0) = 0 THz to f 30(0) ≈
1.08 THz, are displayed by the 30 bottom black lines (where
fm(k = 0) = ωm(k = 0)/2π are the phonon eigenfrequencies for
the k = 0 wavenumber). Above them, the dispersion curves
depicted by orange lines correspond to a selected number of
the 600 branches corresponding to eigenmodes between m =
31 and 630 in a frequency interval of 1.5 THz, from f 31(0) ≈
1.08 THz to f630(0) ≈ 2.58 THz. A chosen number of the 65
856 − 30 − 600 = 65 226 remaining dispersion curves with the
highest frequencies are related to the blue lines and plotted in a
frequency band from f631(0) ≈ 2.58 THz to f65 856(0) ≈ 20
THz. As observed in Figure 3a, the dispersion curves are usually
quite flat and become even flatter when the angular frequency
ωm(k) is increased with a higher m value. Their slopes, related
to the amplitudes of the phonon group velocities vm(k) in eq 1,
are therefore quite small (vm(k) = dωm(k)/dk). A first coherent
effect on the extreme reduction of the thermal conductivity in
eq 1 results from this phenomenon. Mention that, for the same
supercrystal size parameters N and M, the same set of
dispersion curves is computed for the strongly (q = 0) and
weakly (q > 0) bonded nanostructures. Recall that N ≥ 14
already corresponds to a number of dispersion curves larger
than 65 856 including many higher-frequency branches with a
quite flat behavior. In addition, the folded dispersion diagram
can be computed only at the scale of the whole “phononic”
crystal. Owing to these two reasons, the dependence of the
band structure with respect to q is of second order and can be
neglect, already for small N values.
Figure 3b is a close-up of the bottom of Figure 3a, displaying

all the 630 dispersion curves related to the eigenmodes from m
= 1 to 630 located in a low frequency band from f1(0) = 0 THz
to f630(0) ≈ 2.58 THz. The 30 bottom branches from m = 1 to

30 are first drawn in part b using black lines in a frequency
interval from f 0(0) = 0 THz to f 30(0) ≈ 1.08 THz. In the full
dispersion diagram, shown in part a, they were depicted by the
30 bottom lines with the same black color. In part b, the 600
dispersion curves indexed by m = 31 to 630 inside a higher
frequency range with a width of 1.5 THz from f 31(0) ≈ 1.08
THz to f630(0) ≈ 2.58 THz are sketched within six frequency
intervals using a set of multiple colors. In the full dispersion
diagram in part a, a number of these curves were plotted using a
unique orange color. In part b, each of the 6 higher-frequency
intervals contains 100 dispersion curves each. They are
depicted by red, green, blue, cyan, magenta, and yellow lines
and respectively related to the branches from m = 31 to 130,
131 to 230, 231 to 330, 331 to 430, 431 to 530, and 531 to 630
[Figure 3b]. After observation of the groups of the 600
dispersion curves sketched with multiple colors in part b, we
can see that their slopes (giving the group velocities) tend to
decrease with an increasing frequency. The 30 bottom branches
in black color for m = 1 to 30 present the largest slopes in

Figure 3. (a) Chosen branches of the dispersion diagram of the Si/Ge
supercrystal with N = 14 and M = 6. (b) Close-up of the 630
dispersion curves with the lowest frequencies in the range from 0 to
2.58 THz. (c) Density of states (DOS) in the range from 0 to 2.58
THz. The seven bin sizes to obtain the DOS correspond to the
bandwidths containing the dispersion curves colored in black (m = 1
to 30), red (m = 31 to 130), green (m = 131 to 230), blue (m = 231 to
330), cyan (m = 331 to 431), magenta (m = 431 to 530), and yellow
(m = 531 to 630) in part b.
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Figure 3b and are included in a quite large frequency band of
Δf black = 1.08 THz. In contrast, the 100 dispersion curves in red
color for m = 31 to 130 are contained in a smaller frequency
interval with a bandwidth Δf red = 0.44 THz, less than half of
that (Δf black) in which the 30 bottom black-colored curves are
drawn. In addition, the number of the black-colored branches is
lower by ∼3.3-fold with respect to that of the red-colored
curves [Figure 3b], resulting in a higher density of states
(DOS) in Δf red compared with that in the bandwidth Δf black.
Above the frequency range Δf red (containing the 100 red-
colored branches), the 5 other higher-frequency intervals in
part b, Δfgreen, Δf blue, Δfcyan, Δfmagenta, and Δf yellow, with
dispersion curves respectively sketched in green, blue, cyan,
magenta, and yellow colors, have decreasing bandwidths for an
increasing frequency but for the same number of 100 dispersion
curves per interval, leading to a growing DOS with the
frequency. In the top of Figure 3b, the 100 yellow-colored
curves are in a frequency interval of only Δf yellow = 0.13 THz
(from f531(0) ≈ 2.45 THz to f630(0) ≈ 2.58 THz). This band is
the smallest compared with the increasing bandwidths Δfmagenta
= 0.17, Δfcyan = 0.21, Δf blue = 0.22, Δfgreen = 0.43, Δf red = 0.44,
and Δf black = 1.08 THz of the six frequency intervals that
contain the dispersion curves respectively depicted in magenta,
cyan, blue, green, red and black colors, from the top (higher
frequencies) to the bottom (lower frequencies) of part b.
Figure 3c shows the DOS obtained from the previous band-

diagram analysis of the 630 modes with the dispersion curves
drawn in part b, from f 0(0) = 0 THz to f630(0) ≈ 2.58 THz.
The DOS g is computed as g(Δω) = D(Δω)/Δω, where
D(Δω) is the number of eigenvalues ωm(0) in a angular
frequency bin Δω = ωs(0) − ωr(0) with the mode index m in
the interval r ≤ m ≤ s (r and s are positive integers). In practice,
we compute the DOS using the seven frequency bins Δf black,
Δf red, Δfgreen, Δf blue, Δfcyan, Δfmagenta, and Δf yellow, displayed in
part b, as

ω ω ω ω πΔ = Δ Δ Δ = Δg D f( ) ( )/ with 2bin bin bin bin bin
(4)

In eq 4, the index bin corresponds to “black”, “red”, “green”,
“blue”, “cyan”, “magenta”, or “yellow” in the color indexation of
part b. D(Δω) = 30 in the bin Δf black, and D(Δω) = 100 in the
six higher-frequency bins with the dispersion curves plotted in
red, green, blue, cyan, magenta, or yellow in Figure 3b. Hence,
we obtain seven values for the DOS in part c, where the
frequency coordinate for each DOS value is taken at the middle
of the related bin. We observe a nonlinear increase of the DOS
for an increasing frequency.
From normal to high temperatures, the summation in eq 1

has to be performed over all eigenmodes (from m = 1 to 24N3

= 65 856 when N = 14) in a frequency range from 0 to 20 THz.
Indeed, although the slopes of the dispersion curves related to
the |vm(k)| amplitudes in eq 1 tend to decrease for an increasing
frequency, the DOS tends, in contrast, to grow for an increasing
frequency. Consequently, the “optical” modes of higher
frequencies cannot be neglect in the summation over m in eq
1. Moreover, according to Planck ’s law, the population of the
many “optical” modes tend to increase with T. We therefore
obtained an even lower thermal conductivity for T > 300 K
since the high-frequency modes with low group velocities
became more populated.14

Ultralow Thermal Conductivity Minimum. Figure 4
shows evolutions of λ vs d = Na at T = 300 K. The X and Y axes
correspond to log10(d) and log10(λ), respectively. The seven

interpolation curves, sketched using multiple colors, are
computed for seven chosen q values between q = 0 and 1 in
Si/Ge supercrystals with x ≈ 12.5 Ge at %. The bottom solid
black line displays the λ vs d interpolation curve assuming that
all nanodots are weakly bonded in the supercrystal (q = 1). The
near-field scattering cross section is therefore maximal because
q = 1. From the leftmost to rightmost parts of Figure 4, the
vertically aligned circles and diamonds of multiple colors are
computed for supercrystal parameters increasing from N = 3 to
91 for the nanodot spacing and fromM = 1 to 45 for their basis.
Fourteen supercrystals modeled with q = 1 are related to the
black-colored circles. These points are fitted (in the double log
scale) by the black solid curve using a quadratic interpolation of
log λ vs log d [bottom of Figure 4]. Indeed, by observation of
the black solid curve (q = 1), a linear decrease of this curve is
first obtained for the supercrystals composed of the smallest-
size nanodots, from a proportionality with the negative of the
supercell-volume (V) logarithm. However, when d > 5.97 nm
(N > 11 and M > 5), the solid black curve decreases at a slower
pace until a global minimum λ* = 0.009 W/(m K) of the
thermal conductivity is reached for q = 1.
The ultralow thermal conductivity λ* shows an extreme

reduction of ∼17 000 folds compared with that of bulk Si. The
term λ*(q = 1) is obtained for the nanodot spacing d = d* =
30.4 nm corresponding to the nanodot size w = w* = 14.7 nm.
These d* and w* optimal values are related to the integer size
parameters N = 56 and M = 27, respectively. When d > d*, the
black solid curve grows to finally pass Λmin. This curve increases
above Λmin when d ≥ 500 nm after its extrapolation for large d
values [right part of Figure 4]. A nanodot separation larger by
at least 5-fold with respect to the MFP lSi ≈ 100 nm is
necessary to find back a macroscopic effective medium for
thermal transport. A nanodot basis w < 250 nm must therefore
be used to beat Λmin in supercrystals with q = 1.
The utilized fit results in log λ = c2X

2 + c1X + c0, where X =
log d and the coefficients c0, c1, and c2 correspond to the lowest
root-mean-square deviation (RMSD) between the black circled

Figure 4. Thermal conductivity λ vs nanodot spacing d curves for
seven values of the density q. From the bottom to top, the black, red,
green, blue, magenta, and cyan solid curves, fitting the circles with the
same color, are respectively computed for q = 1, 1/2, 1/6, 1/12, 1/48,
and 1/192. The black dashed curves, fitting the diamonds of the same
color, corresponds to the perfect crystal with q = 0. The brown
dashed−dotted horizontal line is a reference to Λmin for amorphous Si.
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points and interpolation curve. First, when X is small, log λ
presents a quasilinear diminution with X. Indeed, in this case, λ
decreases in dc1, where c1 is in a range between −3 and −2. c1 =
−3 would mean that λ diminishes with the inverse of V. For
larger X values, the log λ vs X curve flattens. Therefore, a
second-order correction c2X

2 has to be added to the initial
linear polynomial log λ ≈ c1X + c0. A quadratic instead of cubic
polynomial (with four instead of only three fitting coefficients)
of X is chosen to interpolate log λ. Indeed, a smaller RMSD is
computed for the quadratic polynomial compared with the
cubic fit. A quadratic interpolation with only one thermal-
conductivity global minimum λ* is therefore preferred instead
of higher order fits in ∼Xn. In addition, the quadratic fit leads to
d ≥ 500 nm = 5lSi for λ ≥ Λmin. The asymptotical value d ∼ 500
nm of the fit seems reasonable. Indeed, for a supercell width d
larger than the MFP lSi ∼ 100 nm by several folds, one can
expect that the nanomaterial loses its phonon-blocking
microscopic properties at the misbonded interfaces because
the 3D barriers are becoming too large to lead to enhanced
phonon scattering.
The seven fits are computed for seven chosen q values. Each

curve shows a global minimum λ*(q) depending on q. From
the bottom to the top of Figure 4, the black, red, green, blue,
magenta, and cyan solid curves are obtained using six
decreasing nonzero q values given by q = 1, 1/2 = 0.5, 1/6 =
0.1667, 1/12 = 0.0833, 1/48 = 0.0208, and 1/192 = 0.0052,
respectively. In the top of Figure 4, the dashed black curve is a
quadratic interpolation of the black diamond points computed
for supercrystals with q = 0. Hence, the supercrystals related to
the diamonds correspond to perfect crystals and present perfect
bonding at all nanodot interfaces. The dashed black fit for q = 0
decreases much more slowly than the solid black curve (q = 1).
Indeed, q = 0 corresponds to σ̅q = 0 in eq 3. The dashed black
fit (q = 0) reaches its global minimum λ* = 0.43 W/(m K)
when d is increased to d* = 91.8 nm [Figure 4]. This value
remains lower than Λmin by ∼2-fold and is related to the
optimal nanodot size w* = 45.6 nm. The optimal spacing d*(q
= 0) is almost equivalent to lSi because only Umklapp lifetimes
have to be considered in eq 1. After the global minimum λ*(q =
0) is reached, the dashed black curve increases above Λmin when
d ≥ 300 nm. Thus, the perfect crystal can as well beat Λmin
when w ≤ 150 nm. Weak covalent bonding at the Si/Ge
interfaces is therefore a second (incoherent) effect on the
observed extreme λ reduction. Indeed, when q = 1 in the Si/Ge
supercrystal, the global minimum λ*(q = 1) shows an
additional reduction of λ*(q = 0)/λ*(q = 1) ≈ 43-fold with
respect to that of the perfect crystal [λ*(q = 0)] where the only
coherent effect of the low group velocities and Umklapp
scattering is considered [eqs 1 and 2]. In addition, the optimal
nanodot spacing d*(q = 1) in the supercrystal with q = 1 is
reduced by d*(q = 0)/d*(q = 1) ≈ 3-fold compared with the
perfect crystal [d*(q = 0)]. Indeed, the high number of
incoherent scattering events introduced by the maximized
σm
(q)(k) = 2G when q = 1 significantly reduces the MFP with
respect to the perfect crystal [eqs 2 and 3]. The red, green,
blue, magenta, and cyan solid curves are intermediate cases
between q = 1 (black solid curve) and q = 0 (black dashed
curve) and show global minima respectively given by λ*(q = 1/
2) = 0.013, λ*(q = 1/6) = 0.026, λ*(q = 1/12) = 0.038, λ*(q =
1/48) = 0.078, and λ*(q = 1/192) = 0.13 W/(m K) [Figure 4].
Increases in both λ* and d* are observed when q is decreased.
The preceding analyses were presented at T = 300 K. However,
to obtain a maximized ZT, conventional Si/Ge thermoelectric

alloys are used at higher temperatures where a ZT peak occurs.3

The material stability depends on the lowest melting point of
the two constitutive materials (Si and Ge). Therefore, at
normal pressure, the proposed Si/Ge nanostructure should as
well remain stable and utilizable at high temperatures up to T ≈
1200 K, the last value being the Ge melting point.14

Recent experimental measurements in ref 13 showed a
thermal conductivity of ∼1 W/(m K) in a Si/Ge quantum dot
superlattice. A key point is that the nanostructured Si/Ge
crystal experimentally studied by these authors is geometrically
different from the Si/Ge supercrystal proposed in our study.
First, their Ge nanodots have traditional pyramidal or domelike
shapes and are connected together by parallel Ge epitaxial
layers on Si spacers. In addition, they present a height that can
be smaller by several folds with respect to the Si spacer
thickness (due to a low height/width ratio of the nanodots).
On the other hand, they can show varying elongations in
different crystallographic orientations parallel to a Ge epitaxial
layer, after observation of AFM and TEM images.13 Si/Ge
quantum dot superlattices with a comparable geometry than
those presented in ref 13 were also fabricated and their thermal
conductivity was measured to be as well of the order 1 W/(m
K) in the previous literature (see refs 6, 29, and 30, e.g.). From
the precedent, with respect to phonon confinement and
barriers, the quantum dot superlattice of ref 13 has an effective
dimensionality that is not 3D but probably between one and
two dimensions. Therefore, its thermal conductivity can be
blocked for a given crystallographic direction but can possibly
pass in other directions. In ref 1, using a model presenting
similarities with that proposed in this paper, thermal
conductivity values of ∼1 W/(m K) (as in ref 13) were
computed in a 2D Si nanoscale membrane supporting domelike
Ge nanodots at its top. In one of the examples, the thickness of
the Si nanomembrane was of the same order of magnitude than
that of the Si spacer in ref 13. In the nanomembrane, the ∼1
W/(m K) thermal conductivity was obtained in the crystallo-
graphic direction were the nanodots have the smallest width.1

In the orthogonal in-plane direction were the Ge nanodots had
an elongated shape, by definition, the directional thermal
conductivity was however exalted by more than 20-fold up to
∼30 W/(m K). As a consequence, it was already shown that it
is difficult to obtain an overall extreme reduction of the thermal
conductivity in nanomaterials that do not possess a fully 3D
behavior for phonon blocking and Λmin cannot be beaten by a
significant factor, in contrast to this report. Porous Si nanoscale
membranes made from thin film technologies were as well-
fabricated to reduce the thermal conductivity.31 However, due
to their 2D behavior, these porous membranes cannot be
considered as 3D phonon blockers. Hence, as observed in the
experimental results in ref 31, Λmin remains the minimal
thermal conductivity limit in these materials for the same
aforementioned reasons. Also recall mathematically that the
free-space DOS to be used in the thermal conductivity integral,
as that in eq 1, depends on k2 in three dimensions but only in k1

in two dimensions and is a constant (k0) in one dimension,1,4,8

in agreement with the precedent.
The weakly bonded nanodot interfaces should not lead to a

too significant decrease of the electrical conductivity in
comparison with the huge thermal conductivity reduction (to
obtain a high ZT). In the example in Figure 2, misbonded Si or
Ge atoms at the nanodot interfaces would result in the
formation of nonshared valence electrons between atoms due a
lack of covalent bonds between Si and Ge. The delocalized
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electrons could hop to the conduction band or create
polarization effects, which would help to keep the electrical
conductivity. Note that previous studies showed that an
increase of the number of charge carriers by doping (up to
an optimal concentration due to the electronic λ) enables to
increase ZT.5,31

It is still not so clear how the proposed weakly bonded
supercrystal could be fabricated. Nevertheless, we could
envision that the Si layer on which the Ge islands are grown
could be prepatterned by either electron or ion beam
lithography, ion implantation, or laser annealing, for instance
(technologies being already used in microelectronics).16,17,32−35

Experimentalists could then find a way to introduce a proper
strain from the prepatterned Si. The strain should be exerted so
that the Ge islands would grow on or move to out-of-
equilibrium Si sites that do not lead to energy minimization.
Weak bonds could be formed at the Si/Ge interfaces thereof.

■ CONCLUSIONS
An ultralow thermal conductivity is obtained in a Si/Ge
supercrystal vs the number of weakly bonded Ge nanodots.
When all nanodots are weakly bonded (i.e., q = 1), a fast λ
diminution is first observed when d is increased until the
ultralow minimum λ* = 0.009 W/(m K) is reached. This λ
value shows a ∼ 17 000-fold reduction compared with bulk Si,
possibly leading to high ZT. A factoras high as ∼50-fold
accounts for the increase of q from 0 to 1 in the total λ
decrease. Thereafter, when d > d* ≈ 30 nm, λ increases and
passes Λmin when d ≥ 500 nm = 5lSi. When q is decreased from
1 to 0, λ* is augmented from 0.009 to 0.43 W/(m K), the last
value being for a perfect crystal (i.e., q = 0). We also believe
that it is not possible to beat Λmin by a significant factor using
other types of nanomaterials for which phonon blocking is only
1D or 2D instead of 3D in the proposed nanomaterial with
weak bonds.
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